Lecturer(s)


Blobner Jana, RNDr. Ph.D.

Štauberová Zuzana, Mgr.

Tomiczková Světlana, RNDr. Ph.D.

Course content

1. Vectors. 2. Determinants. 3. Inverse matrix and applications of matrix calculus. 4. Methods for integration (per partes, basic substitutions). Improper integrals. 5. The ideas of integral calculus in numerical mathematics. Applications in math. statistics and economy. 6. Differencial equations  basic methods. 7. Linear differencial equation of the first order and its applications in economy. 8. Sequences. 9. Difference of a sequence, difference of higher orders. Difference equation. 10. Linear difference equation and its applications in economy. 11. Partial derivation and gradient, extremes of functions of multiple variables. 12. Applications of functions of multiple variables in economy. 13. Resume. Examples. Conclusion.

Learning activities and teaching methods

Lecture with practical applications, Collaborative instruction, Seminar classes, Individual study, Practicum
 Contact hours
 39 hours per semester
 Preparation for formative assessments (220)
 6 hours per semester
 Preparation for comprehensive test (1040)
 9 hours per semester
 Preparation for an examination (3060)
 24 hours per semester

prerequisite 

professional knowledge 

Students should have a basic knowledge of matrix algebra, calculus of one real variable and calculus of multiple variable. 
learning outcomes 

On completion of this course the student will be able:  to find an inverse matrix  to find an antiderivate and to compute an integral of certain functions of one variable  to use integral calculus in its applications (geometry, math.statistics, ecomomy)  to use a differencial or difference equation for describing a simple economic model, to solve it and to interpretate results  to determine extremes of a function of multiple variables 
teaching methods 

Practicum 
Collaborative instruction 
Individual study 
Lecture with practical applications 
Seminar classes 
assessment methods 

Combined exam 
Test 
Skills demonstration during practicum 
Recommended literature


Dolanský, Petr; Tuchanová, Milena. Matematika pro ekonomy 1.,2.,3.část : pro distanční studium. 1.vyd. Plzeň : ZČU, 1995.

Dolanský, Petr; Tuchanová, Milena. Příklady z matematiky pro ekonomy I : distanční studium. 1. vyd. Plzeň : ZČU, 1995. ISBN 8070821841.

Kaňka M., Henzler J. Matematika pro ekonomy. Ekopress Praha, 1997.

Kaňka, Miloš; Henzler, Jiří. Matematika pro ekonomy 2. 1. vyd. Praha : Ekopress, 1997. ISBN 8086119017.

Mašek, Josef. Základy matematiky II : cvičení. 1. vyd. Plzeň : ZČU, 1999. ISBN 8070825073.
