Course: Thermodynamics 2

« Back
Course title Thermodynamics 2
Course code KKE/TM2
Organizational form of instruction Lecture + Tutorial
Level of course not specified
Year of study not specified
Semester Winter
Number of ECTS credits 5
Language of instruction Czech
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Linhart Jiří, Prof. Ing. CSc.
Course content
Topics of lectures by weeks: 1st week: Introduction. Basic relations and equations for laminar flow and convection: tensor of tension in fluid, state-, Navier-Stokes-, continuity equation and derivation of energy equation. 2nd week: Dissipation and simplification of energy equation to Fourier-Kirchhoff equation, temperature field, Biot-Fourier law and heat conductivity. 3rd week: Newton´s law for convective heat transfer. Equations describing turbulent flow and heat transfer working with fluctuations of velocity, temperature, pressure and density (Van Driest and Reynolds modifications). 4th week: Prandtl´s model for turbulent shear stress and heat flux. Geometric, time, physical and boundary conditions. Derivation of similarity criterions. 5th week: Process of criterion equation preparation. Heat conduction in a body of simple geometry at steady conditions. 6th week: Thermal insulation. Steady heat conduction in a thin metal bar, in a cylindrical cross rib and in a longitudinal rib of a variable cross section. 7th week: Unsteady heat conduction solved by analytical and numerical methods: periodic and unperiodic cases. Grafical solution. 8th week: Convection. Velocity and temperature boundary layer. Definitions of substitute layers. Distribution of velocity and temperature in boundary layer (Pohlhausen method). 9th week: Integral equation of temperatue boundary layer. Calculation of heat transfer coefficient on a plate by using integral equations for velocity and temperature boundary layer. 10th week: Calculation of heat transfer at a high temperature gradient. Natural convection: derivation of appropriate similarity criterions and implementation of valid criterion equation for some frequent cases. 11th week: Forced convection in tubes and channels. Derivation of corresponding similarity criterions and presentation of criterion equations for channels, cross flown tubes and tube bundles. Problems of channels inlet parts. Heat transfer in boiling liquid and in condensing steam. 12th week: Heat exchangers including special ones (heat tube, vortex tube..). Diffusion of mass, Fikk´s law, similarity of equations of heat convection and mass diffusion. 13th week: Heat radiation. Basic 4 principles: Planck´s-, Steffan-Boltzman´s-, Kirchhoff´s- and Lambert´s law. Radiation between parallel plates and between quite generally orientated surfaces. Emisivity of gases. Topics of seminars by weeks 1st week: Steady temperature profile in a plane and cylindrical wall with inside source of heat. 2nd week: Steady temperature field in plane wall with heat conductivity depending on temperature and with inside heat source at different boundary conditions. 3rd week: 1st test (10min.). Unsteady temperature field in a body solved by Fourier method. 4th week: Solutuion of the previous task by numerical and grafical method. 5th week: 2nd test (10min.). 2-D steady tasks solved by approximate method utilizing shape factor. 6th week: Assignment of the 1st semester work. Solution of the laminar boundary layer. 7th week: 3rd test. Calculation of the turbulent boundary layer. 8th week: Natural convection on a horizontal and vertical cylinder. 9th week: 4th test. Heat transfer in the cross flown tube bundle. Thermal design of the horizonatal steam condenser. 10th week: Assignment of the 2nd semester work. Heat transfer in nuclear reactor. 11th week: 5th test. Boiling of liquid. Descending of condensate film on vertical surface. 12th week: Mass transfer in a calm and in a flowing 2-phase medium. 13th week: Radiant heat exchange among surfaces of stiff bodies.

Learning activities and teaching methods
Lecture with practical applications, Seminar classes, Individual study
  • Preparation for an examination (30-60) - 40 hours per semester
  • Preparation for formative assessments (2-20) - 12 hours per semester
  • Contact hours - 65 hours per semester
  • Graduate study programme term essay (40-50) - 40 hours per semester
prerequisite
professional knowledge
Successfully finished 2 examinations in mathematics on MEF (Mechanical Egineering Faculty), FAS (Faculty of Applied Sciences), EEF (Electrical Engineering Faculty) or at some other technical university.
mít složenou zkoušku z mechaniky tekutin a termomechaniky
rozumět anglickému odbornému textu
professional skills
vypracovat výpočtový program jednodušší fyzikální úlohy
pracovat s některým z komerčních výpočtových či konstrukčních programů pro strojírenství nebo energetiku
provést analytický výpočet jednodušší obyčejné diferenciální rovnice nebo soustavy lieárních algebraických rovnic
learning outcomes
professional knowledge
Student will know heat transfer mechanismes and methods for solution conduction, convection and radiation. He will be able to solve, namely analytically, numerically or experimentally, some simpler cases of heat transfer in equipments of industrial practice. He can qualifiedly operate the complicated commercial programmes because he knows mathematical apparatus and physical phenomena occuring in them.
řešit úlohy kondukce, konvekce a radiace
specifikovat kriteria podobnosti a kriteriální rovnice v konvekci
rozumět problematice varu kapalin v nádobách a varných trubkách, vysvětlit krizi varu
optimalizovat kondenzaci při různé orientaci chlazené plochy (vodorovné a svislé trubkové svazky)
přenášet kriteriální rovnice konvekce na přenos hmotnost ipři sublimaci a odpařování
professional skills
vyřešit teplotní pole v pevném tělese numericky při různých okrajových podmínkách síťovou nebo metodou tepelných bilancí
analyticky vypočítat teploty a tepelné toky v jednoduchých tělesech (deska, válec) při stacionárních nebo nestacionárních okrajových podmínkách
umět pracovat s kriteriálními rovnicemi pro stanovení součinitele přestupu tepla nebo přenos hmotnosti
navrhnout různé typy výměníků tepla (regenerátory, rekuperátory, směšovací atd) a určit jejich parametry, např. součinitel prostupu tepla, střední teplotní rozdíl, výkon aj.
teaching methods
professional knowledge
Lecture with practical applications
professional skills
Seminar
assessment methods
professional knowledge
Combined exam
professional skills
Report
Recommended literature
  • Jícha, Miroslav. Přenos tepla a látky. Brno : CERM, 2001. ISBN 80-214-2029-4.
  • Sazima, Miroslav. Sdílení tepla. 2. vyd, dotisk. Praha : Vydavatelství ČVUT, 1980.
  • Šesták, Jiří; Rieger, František. Přenos hybnosti, tepla a hmoty. 2. vyd. Praha : Vydavatelství ČVUT, 2001. ISBN 80-01-01715-X.


Study plans that include the course
Faculty Study plan (Version) Branch of study Category Recommended year of study Recommended semester