Course: The History of Modern Science

« Back
Course title The History of Modern Science
Course code KFI/DVMD
Organizational form of instruction Lecture
Level of course Doctoral
Year of study not specified
Semester Winter and summer
Number of ECTS credits 5
Language of instruction Czech
Status of course Compulsory-optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Demjančuk Nikolaj, Doc. PhDr. CSc.
  • Havlík Vladimír, PhDr. CSc.
Course content
Theory of evolution (J. B. Lamarck, Ch. Darwin, A. R. Wallace); genetics (G. J. Mendel); population genetics (J. B. S. Haldane, R. Fisher); DNA (James Watson a Francis Crick); neo-darwinism, modern evolutionary synthesis, evolutionary psychology, sociobiology, selfish gen (A. Weismann, G. C. Williams, R. Dawkins, E. O. Wilson, R. A. Fisher, T. Dobzhansky, J. B. S. Haldane, J. S. Huxley, E. Mayr, M. T. Ghiselin, J. Barkow, L. Cosmides, J. Tooby); The crisis of classical physics (black body radiation G. Kirchhoff; photoelectric effect H. Hertz; Planck's radiation law M. Planck; photoelectric effect A. Einstein; model of the atom N. Bohr; the wave-particle dualism L. de Broglie); Non-Euclidean geometry (C. F. Gauss, J. Bolyai, N. I. Lobachevski, B. Riemann); Special and General Relativity (A. Einstein); Quantum theory (The Copenhagen interpretation N. Bohr, matrix quantum mechanics W. Heisenberg; wave quantum mechanics E. Schrödinger; quantum mechanics interpretation); Mathematical logic (Hilbert's program D. Hilbert; Gödel's completeness theorem and Gödel's incompleteness theorems K. Gödel);Cosmology (A. Einstein, W. de Sitter, A. Fridman, G. Gamow, E. Hubble) Topics for exam: 1. Theory of evolution (J. B. Lamarck, Ch. Darwin, A. R. Wallace);) 2. Genetics (G. J. Mendel) 3. Population genetics (J. B. S. Haldane, R. Fisher) 4. The discovery of DNA (James Watson, Francis Crick) 5. The evolutionary theory in 20th century; neodarwinism; modern evolutionary hypothesis; evolutionary psychology; sociobiology; selfish gene (A. Weismann, G. C. Williams, R. Dawkins, E. O. Wilson, R. A. Fisher, T. Dobzhansky, J. B. S. Haldane, J. S. Huxley, E. Mayr, M. T. Ghiselin, J. Barkow, L. Cosmides, J. Tooby) 6. The crisis of classical physics (black body radiation G. Kirchhoff; photoelectric effect H. Hertz; Planck's radiation law M. Planck; photoelectric effect A. Einstein; model of the atom N. Bohr; the wave-particle dualism L. de Broglie) 7. Quantum mechanics (The Copenhagen Interpretation, N. Bohr, Heisenberg, Schrödinger) 8. Non-Euclidean geometry (C. F. Gauss, J. Bolyai, N. I. Lobachevski, B. Riemann) 9. Special and general relativity (A. Einstein) 10. Mathematics and logic (Hilbert's program D. Hilbert; Gödel's completeness theorem and Gödel's incompleteness theorems K. Gödel) 11. Cosmology (Einstein, de Sitter, Fridman, Gamow, Hubble)

Learning activities and teaching methods
Lecture supplemented with a discussion, Group discussion, Self-study of literature
  • Contact hours - 26 hours per semester
  • Individual project (40) - 40 hours per semester
  • Preparation for an examination (30-60) - 64 hours per semester
prerequisite
professional knowledge
Course requires no special prior knowledge and skills.
learning outcomes
Upon successful completion of this course, students will be able to develop their ability to think historically about development of modern science. They will learn how we go about comprehending the past; explaining change and continuity over time with respect to the main scientific theories of 19th and 20th century. Students will be able practice articulating their knowledge of the past and be able to explain how that knowledge relates to the wider historiography as well as present-day concerns. Students will be able to acquire research experience in the history of science development and practice tracking the development of a particular scientific theory over time. They will be able to critically evaluate different historical ideas in published literature. They will have had experience in communicating these ideas effectively in oral and written formats.
teaching methods
Lecture supplemented with a discussion
Group discussion
Self-study of literature
assessment methods
Oral exam
Recommended literature
  • Bowler, P. J. - Morus, I. R. Making Modern Science: A Historical Survey. Chicago, 2005.
  • Bowler, P. J. - Pickstone, J. V. The Cambridge History of Science. Vol. 6. The Modern Biological and Earth Sciences. Cambridge, 2009.
  • Darwin, Charles. O vzniku druhů přírodním výběrem. Vyd. 3., V nakl. Academia 2., rev. Praha : Academia, 2007. ISBN 978-80-200-1492-4.
  • Dawkins, Richard. Sobecký gen. 1. vyd. Praha : Mladá fronta, 2003. ISBN 80-204-0730-8.
  • Einstein, Albert. Teorie relativity a jiné eseje. Praha : Pragma, 2000. ISBN 80-7205-596-8.
  • Heisenberg, Werner. Část a celek : rozhovory o atomové fyzice. [1. vyd.]. Olomouc : Votobia, 1997. ISBN 80-7198-216-4.
  • Jo Nye, M. The Cambridge History of Science. Vol. 5. The Modern Physical and Mathematical Sciences. Cambridge, 2003.
  • Mayr, Ernst. Co je evoluce : aktuální pohled na evoluční biologii. Vyd. 1. Praha : Academia, 2009. ISBN 978-80-200-1754-3.
  • Nagel, Ernest; Newman, James Roy,; Hofstadter, Douglas R.. Gödelův důkaz. Vyd. 1. brož. Brno : VUTIUM, 2006. ISBN 80-214-3174-1.


Study plans that include the course
Faculty Study plan (Version) Branch of study Category Recommended year of study Recommended semester
Faculty of Philosophy and Arts Theory and History of Science and Technology (11-1,2,3,4) Philosophy, theology 1 -
Faculty of Philosophy and Arts Theory and History of Science and Technology (11-1,2,3,4) Philosophy, theology 1 -